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We simulate a relaxation process of non-Brownian particles in a sheared viscous medium; the system is
subject to the small shear strain and then undergoes relaxation. We estimate the exponents with which the
relaxation time and the correlation length diverge as the density approaches the jamming density from below.
In particular, the dynamic critical exponent is estimated as 4.6�2�. It is also found that shear stress undergoes
power-law decay at the jamming density, which is reminiscent of critical slowing down.
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In general �thermal or athermal� particulate systems at
high density, the structural rearrangement is difficult due to
the exclusion volume effect so that the structural relaxation
time and the viscosity drastically increase. In particular,
zero-temperature systems such as granular materials or emul-
sions acquire the elastic moduli above a certain density �1,2�.
This rigidity transition, which is also referred to as the jam-
ming transition, is accompanied by some power-law behav-
iors that are characteristic to critical phenomena, e.g., the
growing correlation length in terms of spatially heteroge-
neous diffusion �3–7�. Indeed, such dynamical heterogene-
ities are also observed in thermal systems such as super-
cooled liquids and dense colloids �8–11�. This suggests the
potential relation between the glass and jamming transitions,
although still controversial �12–15�.

However, the nature of the jamming transition itself is still
not clear. Provided that jamming is a critical phenomenon,
the critical exponents that describe the divergence of the
length and time scales play an essential role in clarifying the
mechanism of the dynamical heterogeneity. In addition, these
exponents may classify the jamming transition into a univer-
sality class �if any�. There are several attempts to estimate
such exponents, in particular that for the correlation length;
����−�J�−�, where � denotes the density and �J is the criti-
cal density. The finite-size scaling suggests that ��0.7 for
both two- and three-dimensional systems �2�. This exponent
is later confirmed by defining the correlation length in the
dynamical heterogeneity �5–7,16,17�. Note that, however,
these attempts on the dynamical heterogeneity exclusively
involve two-dimensional systems. Recalling that the dimen-
sionality plays an essential role in conventional critical phe-
nomena, the correlation length in three-dimensional systems
must be investigated.

Another important quantity that characterizes a critical
phenomenon is the characteristic time. Wyart et al. �18� de-
rived the characteristic frequency of jammed systems using
the normal mode analysis to obtain �c���−�J��, where
�=0.5. However, note that the characteristic time in un-
jammed systems is still not estimated.

Along the line of thought, in this Rapid Communication,
we investigate the behaviors of the relaxation time and the
correlation length in a three-dimensional unjammed system
at zero temperature. It is found that the relaxation time � and
the correlation length � increases obeying power laws with
respect to the density; ����J−��−3.3 and ����J−��−0.7.
These results lead to z�4.6, which coincides with that of a
Lennard-Jones �LJ� glass �19�.

We consider macroscopic particles in a viscous medium
so that temperature does not play any role. Note the density
is always smaller than the jamming density, as we focus
unjammed systems here; ���J�0.639 �2�. We neglect the
hydrodynamic and the electric interactions because we are
interested in the nature of the jamming critical point. The
particles are monodisperse, the diameter of which is denoted
by d. Note that the particles are elastic so that the interaction
between particles i and j is described by the linear repulsive
force; i.e., f ij =khijnij, where k denotes the elastic constant,
nij =rij / �rij�, and hij =d− �rij� denoting the overlap length.
�Note that hij =0 if d� �rij��. Unless otherwise indicated, the
system contains 6.4�104 particles.

A relaxation process is realized in such a way that an
equilibrated system is perturbed at t=0 and then relaxes. To
prepare an initial equilibrated system under periodic bound-
ary conditions, we adopt the conjugate gradient method, by
which randomly distributed particles relax to a zero-energy
state �no overlaps between particles�. Then we perturb this
equilibrated system by applying pure shear with respect to
the �y ,z� plane; i.e., each particle is instantaneously dis-
placed by the following affine deformation,

yi� = yi + 	zi, �1�

zi� = zi + 	yi, �2�

where 	 denotes the shear strain �20�. Accordingly, we adopt
Lees-Edwards boundary conditions with respect to the y and
z directions, in which the adjacent imaginary cells are dis-
placed by 	L. An ordinary periodic boundary condition is
used along the x direction. Due to the shear strain, the over-
lap between particles appears so that the system acquires
nonzero elastic energy. Then the system begins to relax and
eventually reaches a new stable state of zero energy. In order
to mimic the dynamics of macroscopic particles in a highly
viscous medium, we adopt the overdamp dynamics; i.e.,

ṙi=� jfij. Throughout this study, we adopt the units in which
the mass, the diameter, and the mobility 
 are unity. The
elastic constant k is set to be 
2 /m. This procedure may be
realizable in experiments using macroscopic particles in a
viscous medium �21�, where the shear strain is applied via
the viscous medium and the gravity can be canceled by den-
sity matching.
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First, we discuss the relaxation of macroscopic quantities,
in particular the shear stress, which is defined via the virial
�22�. Because other macroscopic quantities such as pressure
or energy show essentially the same behavior, we focus the
shear stress here. The relaxation of shear stress at each den-
sity is shown in Fig. 1�a�, where the initial strain 	 is
1.0�10−3. We also test 	=0.01 and 	=0.05 to confirm that
the result does not depends on the initial strain. Then the
characteristic time is extracted from these relaxation behav-

iors by rescaling the time and the shear stress with � and S̃,
respectively. Then the relaxation profiles collapse onto a
single curve as shown in Fig. 1�b�. We find that this master
curve can be described by

S�t� � S0t−�e−t/�, �3�

with �=0.55�5�. The relaxation time � drastically increases
at higher densities as shown in Fig. 2�a�. We confirm that the
initial configuration does not significantly affect the relax-
ation behavior; less than �10% in the characteristic time.
The result indicates that the relaxation time obeys a power
law to diverge at the jamming density,

� � �0��J − ��−�, �4�

where �0 denotes the time constant that does not depend on
the density and the exponent is estimated as �=3.3�1�.

However, this exponent is valid only in higher density
region ��0.60� and there is a crossover to a different
power law in the lower density region, �=1.5�1�. Note that
this is not due to a finite-size effect as illustrated in Fig. 2�b�,
which shows the relaxation time for three different systems:
N=1000,8000,64 000. This is indeed due to the qualitative
change in the particle dynamics, because the correlation
function discussed below, Eq. �5�, cannot detect any coop-
erative motion in the lower density region, ��0.60. How-
ever, as we focus on the critical nature of the jamming tran-
sition here, we do not further discuss this crossover.

From Eqs. �1� and �4�, it is expected that the relaxation of
shear stress is described by a simple power law at the jam-
ming density, S�t��S0t−�. Figure 3�a� shows the stress relax-
ation at �=0.637, which obeys a power law for a consider-
able duration �up to 6 orders of magnitude�. We remark that
this power-law relaxation, which is quite similar to critical
slowing down, is consistent with a theory in which shear
stress is an order parameter that undergoes marginal stability
at the jamming transition point �23,24�.

The slow relaxation is also apparent at the particle level.
For example, we observe the average magnitude of interpar-
ticle forces defined as 	f
=2�i�j�fij� /NZ, where Z is the co-
ordination number. Interestingly, Z is almost constant during
the relaxation process as shown in Fig. 3�b�. The relaxation
profile of the average force magnitude is shown in Fig. 3�c�,
where we use the same relaxation time as that for the shear
stress. We find that 	f
� t−�e−t/� and the critical slowing
down in the vicinity of the jamming density with the expo-
nent ��0.3. Furthermore, we observe that the energy and
the pressure relax in the same manner; i.e., P� t−�e−t/�

and E� t−2�e−2t/�. This is indeed trivial because
P�2�NZ�−1	f
d /V and E�2�NZ�−1	f2
 /kV, where d and k
denote the diameter and the stiffness of the particles, respec-
tively. Note that f obeys an exponential distribution �25� so
that 	f2
�	f
2.
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FIG. 1. �Color online� �a� The relaxation of shear stress at vari-
ous densities �see the legends�. Lower curves correspond to lower
densities. The relaxation time grows as the density increases toward
the critical density. Here the initial strain 	 is 0.001. �b� Rescaled

shear stress S / S̃ as a function of rescaled time, t /�, where � is the
characteristic time that depends on the density.
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FIG. 2. �Color online� The relaxation time as a function of den-
sity. Solid line in each panel is proportional to ���−3.3, where
�=�J−� and �J=0.639. �a� The relaxation time normalized by �0:
�0=2 for 	=0.05, �0=1 otherwise. The power-law divergence and
the exponent do not depend on the initial strain. �b� There is no
system-size dependence of the relaxation time. The initial strain
	=0.05.
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FIG. 3. �Color online� �a� The relaxation of shear stress for
�=0.637 and 	=0.05. The solid line is proportional to t−0.5. �b� The
relaxation of the average coordination number for �=0.637 and
	=0.05. �c� The relaxation of the average magnitude of interparticle
force, 	f
. Time is rescaled by ���� shown in Fig. 2�a�. Note that 	f

is also rescaled by f̃ ��0.3. The initial strain is 0.001.
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We then investigate the spatial correlation of the particle
motion during the relaxation process. To this end, we com-
pare the initial and the final configurations to define the dis-
placement vector of each particle; �xi=xi

�1�−xi
�0�−A�xi

�0��,
where xi

�0� and xi
�1� are the initial and the final positions of

particle i, and A�r� is the affine deformation vector at posi-
tion r, represented by Eqs. �1� and �2�. Using the displace-
ment vectors �xi, we define the following correlation func-
tion:

G�r� =

�
i�j

�xi · �x j��r − �xi
�0� − x j

�0���

�
i�j

��r − �xi
�0� − x j

�0���
, �5�

which quantifies the extent of cooperative motion in dense
particulate systems �6,9,26–29�. Figure 4�a� shows the col-
lapse of the correlation function, where �G�r /�� is plotted as
a function of r /�. This indicates that � is the correlation
length and the correlation function G�r� is approximately
exponential. As is shown in Fig. 4�b�, this correlation length
� increases as the density approaches the jamming density;
���0��J−��−�. The exponent � is estimated as 0.73�5�,
which is indistinguishable from that of two-dimensional sys-
tems �3–7,16,17�.

From these results we can estimate the dynamic critical
exponent, z=� /�. We replot the relaxation time as a function
of the correlation length in Fig. 5, where we can estimate z as
4.6�2�. This value is quite different from that obtained in
two-dimensional air-fluidized beads, where z�1.4 �5�. At
this point, we do not have any definite explanation on this
difference: this may indicate the dimensionality dependence

of the dynamic critical exponent, or the structural relaxation
process in athermal systems may depend on the specific agi-
tating method by which energy is injected to the system.
Nevertheless, it is noteworthy that almost the same dynamic
critical exponent �z�4.55�0.2� is found in a binary LJ su-
percooled liquid, where the correlation length and the char-
acteristic time for the structural relaxation diverge toward
zero temperature �19�. This result, together with a recent
study �15�, illustrates that the zero-temperature critical point
potentially affects a class of supercooled liquids, although
the equivalence of these exponents might be a mere coinci-
dence.

To summarize, in a three-dimensional system at zero tem-
perature, we show the power-law divergence of the relax-
ation time and the correlation length as the density ap-
proaches the jamming density from below; ���0��J−��−�

and ���0��J−��−�, where �=3.3�1� and �=0.73�5�. The
dynamic critical exponent is estimated as z=4.6�2�, which
coincides with that of a supercooled liquid. We also observe
the critical slowing down of the shear stress and the average
force magnitude in the vicinity of the jamming density. Al-
though the result is restricted to an unjammed system, we
remark that the length and time scales in jammed systems
and the effect of the dimensionality is currently investigated
by using the present relaxation method.

The author is grateful to Shin-ichi Sasa, Hiroki Ohta, and
Michio Otsuki for helpful discussions.
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